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Abstract—Acoustic Scene Classification (ASC) identifies the en-
vironment of an audio recording, with applications in smart cities
and urban planning. Conventional ASC methods often ignore
geographic and temporal variability, limiting generalization. The
APSIPA ASC 2025 Grand Challenge provides city and times-
tamp metadata in a semi-supervised setting, enabling context-
aware modeling. We propose a geography-aware semisupervised
framework that combines the two allowed external datasets
through label harmonization and augmentation. For data without
city labels, pseudo-city labels are generated by grouping users;
synonymous scene labels are normalized, and auxiliary classes
are added. The city / pseudo-city embeddings are integrated
into the SE-Trans backbone during pre-training. We compare
two schedules: ext-ft1 (pseudo labels after pre-training) and
ext-ft2 (pseudo labels during pre-training). In the official 10-
class validation split, ext-ft2 achieves 0.98 accuracy, a 50%
relative error reduction over the strong baseline. Early pseudo-
label integration significantly improves ambiguous classes such
as Shopping mall and Public square.

I. INTRODUCTION

Acoustic Scene Classification (ASC) is a fundamental task
in environmental sound analysis, with the aim of recognizing
the acoustic characteristics of various environments [1]. It
has broad applications in smart city surveillance, intelligent
devices, and urban planning. Recent ASC research has focused
on data-efficient and low-complexity models [2], [3], [4], [5],
yet many existing approaches implicitly assume that the acous-
tic environment is stationary, ignoring variability caused by
geographical or temporal factors. In practice, acoustic scenes
within the same category can vary substantially depending on
the city and recording time. For example, a “public square”
on a weekday morning can sound entirely different from the
same location on a weekend night, with cultural differences
between cities further amplifying this variability [6]. Previous
work has shown that incorporating temporal information can
improve ASC performance [7], but conventional systems often
neglect this context, limiting their generalizability. The ICME
2024 Challenge [8] addressed geographic domain shifts, but
did not explicitly utilize city names or timestamps.

The APSIPA ASC 2025 Grand Challenge1 introduces a
new environment where each audio clip is accompanied by
precise city and timestamp metadata, explicitly encouraging
their use to improve classification. The dataset spans various

1https://www.apsipa2025.org/wp/grand-challenge/

Chinese cities and recording times, requiring models to han-
dle urban-scale variation, cultural diversity, and time-of-day
differences. Similarly to ICME 2024, the challenge adopts a
semi-supervised learning framework [9], [10], reflecting real-
world scenarios with limited labeled and abundant unlabeled
data.

To address this, we propose a geography-aware semi-
supervised approach that takes advantage of the two external
datasets allowed. One dataset provides city labels directly,
while the other lacks them; for the latter, we generate pseudo-
city labels by grouping users into consistent city clusters based
on their IDs. We further augment scene labels by harmo-
nizing synonyms with the challenge taxonomy and adding
auxiliary classes absent from the official set. These enriched
labels, combined with city/pseudo-city embeddings, enable
the model to learn geographic and contextual patterns during
pre-training. Two training schedules are explored: ext-ft1,
which introduces pseudolabels only after pre-training, and
ext-ft2, which integrates them during pre-training. As
shown in our experiments, early pseudo-label integration in
ext-ft2 achieves the highest accuracy (0.98), representing
a 50% relative error reduction compared to a strong baseline.

II. SE-TRANS BASELINE MODEL

The baseline system is based on the Squeeze-and-Excitation
Transformer (SE-Trans) model proposed by Bai et al. [11],
originally developed for acoustic scene classification and other
environmental sound recognition tasks. SE-Trans combines
two key mechanisms: (i) a channel-wise attention module
(Squeeze-and-Excitation block) that dynamically reweights
feature channels to emphasize important acoustic cues and
(ii) a Transformer encoder that captures long-range temporal
dependencies in the input sequence.

Given an input log-mel spectrogram, the SE block first
computes channel importance via global average pooling and
generates scaling coefficients to reweight each channel. The
reweighted features are then aggregated and fed into the
Transformer encoder, which models the temporal context using
multi-head self-attention. Finally, a classification head outputs
scene labels, optionally incorporating location and time em-
beddings to model city- or time-dependent acoustic patterns.

This architecture highlights salient frequency channels while
modeling the temporal structure, leading to improved classi-
fication performance with minimal computational overhead.



TABLE I
ENVIRONMENT LABEL MAPPING FOR EXTERNAL DATASETS.

Original label Mapped label
Subway Metro
Subway station Metro station
Street Traffic street
Park Urban park

Data augmentation such as FMix is also used to enhance
generalization.

III. PROPOSED APPROACH

We design a semi-supervised ASC pipeline that (i) harmo-
nizes labels across the two allowed external datasets, (ii) injects
city metadata (or pseudo-city metadata when unavailable), and
(iii) pretrains SE-Trans with these enriched labels before adapt-
ing the model to the challenge label space. In the following,
we detail the data sources, label construction, input encoding,
and the two training schedules (ext-ft1 and ext-ft2).

Only two external datasets are used, as permitted by the
challenge. TAU Urban Acoustic Scenes 2020 Mobile Devel-
opment [12] and CochlScene [13]. The amount of data with
valid timestamps is limited; therefore, we focus on expand-
ing and exploiting geographical (city) information, which is
comparatively easier to standardize across sources.

A. Label harmonization and expansion

Let YCAS denote the 10 scene classes in the target chal-
lenge. To maximize reuse of external data, we construct an
expanded scene label set Ỹ for pre-training: We normalize
synonymous labels in the external corpora to the CAS tax-
onomy, as shown in Table I. In addition, to increase scene
diversity during pre-training, we augment the label set with
auxiliary classes Yaux that are absent in YCAS: {Metro station,
Street pedestrian, Tram, Cafe, Car, Crowded indoor, Elevator,
Kitchen, Residential area, and Restroom}. The pre-training
uses Ỹ = {YCAS,Yaux}; in the adaptation stage, we reconcile
the classifier to YCAS (Sec. III-D).

B. City metadata construction

Let CCAS denote the 22 cities in the target challenge. We
exploit city information using the extended city set C̃ =
{CCAS, CTAU, CCochl} as an input embedding to SE-Trans: TAU
provides explicit city tags; we directly attach the 10-city labels
CTAU, {Barcelona, Helsinki, Lisbon, London, Lyon, Milan,
Paris, Prague, Stockholm, Vienna}, to each clip and learn
a city embedding. CochlScene does not have explicit city
labels, but recordings are known to be from Korean cities
with 831 distinct users. To inject stable geographical priors
without external resources, we define pseudo-city tokens per
user bucket. Concretely, we map users into fixed buckets by the
hundreds range of their user ID (e.g., 0–99, 100–199, . . .) and
assign a consistent pseudo-city string to each bucket, chosen
from CCochl: {KOREA-user00, KOREA-user01, . . . , KOREA-
user08}. This guarantees that all clips from the same bucketed
user share the same pseudo-city embedding, promoting intra-
bucket acoustic consistency while preserving privacy.

C. Input encoding: audio, city, and time

The audio is converted to log-mel spectrograms and fed
to SE-Trans. The city information is injected via a learned
city embedding that is concatenated or fused with the audio
representation at the input of the encoder (after the initial
integration of SE-Trans). Although timestamps are available in
the target dataset, we set the time embedding to the zero vector
for all stages in this work, isolating the impact of geographical
priors and avoiding potential timestamp domain mismatch
during pre-training (“timestamps with limited coverage”).

D. Pretraining and model alignment

We pretrain SE-Trans on the union of TAU and CochlScene
with the expanded label space Ỹ and the city (or pseudo-
city) embeddings described above. After pre-training, we align
the model in the challenge label space; For city embedding
reconciliation, we retain only the 22 city embeddings that
appear in the CAS dataset and remove the rest. For classifier
reconciliation, we replace the final classification layer to output
the 10 official CAS classes, removing the auxiliary scene heads
that were added for pre-training.

E. Semi-supervised schedules

We consider two training schedules that differ in whether
pseudo-labels are already used during the expanded-data pre-
training stage:

a) ext-ft1 (three-step training):
1) Expanded-data pre-training (no pseudo-labels): Train on

TAU and CochlScene using only available labels with
city/pseudo-city embeddings.

2) Model alignment: Apply the reconciliation in Sec. III-D.
3) CAS fine-tuning: Fine-tuning on labeled CAS data; then,

following the official baseline, generate pseudo-labels
on unlabeled CAS and perform a second fine-tuning on
(CAS labeled ∪ CAS pseudo-labeled).

b) ext-ft2 (four-step training):
1) Expanded-data pre-training: Same as ext-ft1.
2) Expanded-data + CAS pseudo-label joint training: Aug-

ment the above with pseudo-labeled CAS clips (gener-
ated by the baseline procedure) so that the model is
exposed earlier to in-domain acoustics while retaining
city/pseudo-city supervision from external data.

3) Model alignment: As in Sec. III-D.
4) CAS fine-tuning with pseudo-labels: Fine-tune in labeled

CAS and then in (CAS labeled ∪ CAS pseudo-labeled)
to consolidate the decision boundaries in the domain.

F. Rationale and implementation notes

• Why pre-train with expanded labels? Auxiliary classes
expand acoustic diversity and stabilize representation
learning; later removal of auxiliary heads avoids label
mismatch at evaluation time.

• Why are city embeddings? City (or pseudo-city) tokens
act as structured priors for persistent background char-
acteristics (infrastructure, traffic mix, cultural activity
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patterns), helping to disambiguate acoustically similar
scenes across locales.

• Why zero-time embedding is used? Given sparse and
potentially mismatched timestamp coverage during pre-
training, zeroing time embeddings cleanly ablates tempo-
ral priors, isolating the gains attributable to geography.

• Pseudo-label generation. We follow the official baseline
procedure to create pseudo-labels on unlabeled CAS; no
external models beyond the challenge rules are used.

IV. EXPERIMENTAL SETUP

A. Dataset

The development dataset provided by the APSIPA ASC
2025 challenge is based on the Chinese Acoustic Scene
(CAS) 2023 collection. It contains approximately 24 hours
of audio recordings collected between April and September
2023 across 22 cities CCAS in China: {Xi’an, Xianyang,
Changchun, Jinan, Hefei, Sanya, Nanning, Haikou, Guilin,
Guangzhou, Chongqing, Shenyang, Beijing, Baishan, Taiyuan,
Tianjin, Nanchang, Shanghai, Luoyang, Liupanshui, Shangrao,
Dandong}. Each clip is annotated with city metadata and a
precise timestamp (year–month–day–hour–minute–second).

The dataset covers 10 classes of acoustic scene YCAS: {Bus,
Airport, Metro, Restaurant, Shopping mall, Public square,
Urban park, Traffic street, Construction site, Bar}. The audio
content is identical to that in the ICME 2024 challenge, but the
inclusion of city and time metadata enables new context-aware
classification strategies. The labeled portion consists of ∼4
hours of audio, while the remaining ∼20 hours are unlabeled.

B. Challenge constraints

The rules impose the following restrictions:
• Only two external datasets can be used for pre-training:

TAU Urban Acoustic Scenes 2020 Mobile Develop-
ment [12] and CochlScene [13].

• The use of proprietary or non-public data is prohibited.
• Ensemble models are not allowed; evaluation must be

based on a single model.
• Large-scale pretrained audio or audio-language models

(e.g., Whisper, Qwen-Audio, LTU) are prohibited.
• The primary research focus should be on the use of city

and time metadata for performance improvement.

C. Semi-supervised framework

The challenge adopts a multimodal semi-supervised learning
framework, where the model processes:

1) Acoustic features of the raw waveform (log-mel spec-
trograms).

2) City embeddings derived from the provided metadata.
3) Time embeddings derived from the timestamp (not used

in our experiments; set to zero vectors).
Following the baseline pipeline, training proceeds as follows:

1) Learning an initial model in the labeled subset (∼4
hours).

TABLE II
VALIDATION ACCURACY OF BASELINE AND PROPOSED SCHEDULES.

Model Acc. Description
Baseline (20 ep.) 0.94 Default setting
Baseline (100 ep.) 0.96 Extended training
Ext. + FT (ext-ft1) 0.96 No pseudo-labels in pre-training
Ext. + FT (ext-ft2) 0.98 Pseudo-labels in pre-training, best

acc.

2) Generating pseudo-labels for the unlabeled portion (∼20
hours).

3) Re-training the model on the union of labeled and
pseudo-labeled data.

The backbone architecture is SE-Trans (Sec. II), which in-
corporates city/time embeddings into its transformer-based
acoustic encoder.

V. RESULTS

Metrics follow the official challenge protocol (Sec. IV).
The backbone architecture is SE-Trans [11], and the training
schedules ext-ft1 and ext-ft2 are detailed in Sec. III.

A. Overview

Table II summarizes the validation accuracy in the official
10-class split. The strongest baseline, trained for 100 epochs,
achieves 0.96 accuracy, while the ext-ft2 schedule reaches
0.98, reducing the error rate from 4% to 2%, corresponding to
a 50% relative error reduction. The greatest improvements are
observed in acoustically ambiguous classes such as Shopping
mall, Restaurant, and Public square. A detailed class-wise
analysis is provided in the Appendix.

B. Confusion Matrices

The confusion matrices in Figs. 1–4 reveal clear trends. For
baseline models (Figs. 1 and 2), most misclassifications occur
in categories with overlapping background acoustics, such
as Urban park, Bar, and Shopping mall. Extending training
to 100 epochs improves recall for Airport, Restaurant, and
Shopping mall. With the ext-ft1 schedule (Fig. 3), decision
boundaries become sharper and most classes achieve approx-
imately 0.95 in both precision and recall, although minor
confusion remains between scenes of nature and open public
space. The ext-ft2 schedule (Fig. 4) further reduces off-
diagonal errors, producing an almost perfectly diagonal matrix
and near-perfect classification for Shopping mall, Restaurant,
and Public square.

C. Learning Dynamics

Figures 5–8 present the validation accuracy and training loss
curves. In the baseline (Fig. 5), Phase 1 training on labeled
data yields steady loss reduction and accuracy improvement,
but Phase 2 pseudo-label fine-tuning offers minimal additional
gain, likely due to the limited reliability of pseudo-labels
without stronger priors. For the expanded-data pre-training
setup (Fig. 6), both phases show continuous improvement,
suggesting that geographic priors from city and pseudo-
city embeddings enhance pseudo-label stability. In ext-ft1
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Fig. 1. Confusion matrix for the baseline model after 20 training epochs.
Performance is strong for acoustically distinctive classes such as Construction
site and Traffic street, but recall is lower for ambiguous classes like Urban
park and Bar.

Fig. 2. Confusion matrix for the baseline model after 100 training epochs.
Increasing training epochs improves recall for Airport, Restaurant, and Shop-
ping mall, while maintaining high accuracy for clearly defined acoustic scenes.

(Fig. 7), the absence of pseudo-labels during pre-training leads
to earlier saturation of accuracy gains; while subsequent CAS
fine-tuning improves results, the final accuracy remains at
0.96. In contrast, ext-ft2 (Fig. 8) incorporates pseudo-
labels already during the expanded-data stage, enabling early,
geography-aware exposure to in-domain acoustics. This ap-
proach maintains accuracy improvements through both phases,
ultimately achieving the best performance of 0.98.

City and pseudo-city embeddin gs prove effective in dis-
ambiguating acoustically similar scenes that vary systemati-
cally across locations. Early introduction of pseudo-labels in

Fig. 3. Confusion matrix for the proposed ext-ft1 schedule. Most classes
achieve precision and recall around 0.95 or higher, with clear improvements
over the baseline; however, slight recall drops remain for Urban park and
Restaurant.

Fig. 4. Confusion matrix for the proposed ext-ft2 schedule. This
configuration achieves the highest overall accuracy (0.98), with recall ≥ 0.95
for nearly all classes. Predictions are notably more stable for acoustically
ambiguous categories such as Shopping mall, Restaurant, and Public square.

ext-ft2 synergizes with geography-aware pre-training, lead-
ing to more reliable pseudo-labels and stronger downstream
fine-tuning performance. Remaining errors are primarily found
in nature-like environments such as Urban park, indicating
potential benefits from incorporating temporal embeddings or
explicit scene-attribute modeling in future work.

VI. CONCLUSION

In this work, we addressed the challenge of acoustic scene
classification under geographic and temporal variability using
the APSIPA ASC 2025 dataset. We proposed two extended-
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Fig. 5. Validation accuracy and training loss for the baseline model. Accuracy
improves steadily in Phase 1 but saturates quickly in Phase 2, indicating limited
benefit from pseudo-labels without stronger priors.

Fig. 6. Validation accuracy and training loss for expanded-data pre-training.
Accuracy increases consistently in both phases, demonstrating the stabilizing
effect of external data and city/pseudo-city embeddings.

Fig. 7. Validation accuracy and training loss for the ext-ft1 schedule.
Without pseudo-labels in pre-training, Phase 2 gains are modest, and the final
accuracy (0.96) is lower than that of ext-ft2.

data training schedules, ext-ft1 and ext-ft2, which
leverage city/pseudo-city embeddings and harmonized scene
labels from two allowed external corpora. Our results show
that incorporating pseudo-labels during the expanded-data
pre-training stage (ext-ft2) yields the highest validation
accuracy (0.98), representing a 50% relative error reduction
compared to a strong 100-epoch baseline. Confusion matrix
analysis confirms that the largest gains occur in acoustically

Fig. 8. Validation accuracy and training loss for the ext-ft2 schedule.
Early integration of CAS pseudo-labels during pre-training yields high Phase 1
accuracy and continued improvement in Phase 2, achieving the best final
accuracy (0.98).

TABLE III
BASELINE PERFORMANCE (20 EPOCHS).

Class Precision Recall F1-Score Support
Airport 0.97 0.74 0.84 39
Bar 0.90 0.97 0.94 37
Bus 0.97 0.97 0.97 32
Construction site 1.00 0.97 0.99 34
Metro 1.00 0.93 0.96 44
Public square 0.95 1.00 0.97 39
Restaurant 0.90 0.93 0.92 30
Shopping mall 0.81 0.96 0.88 27
Traffic street 1.00 1.00 1.00 35
Urban park 0.88 0.96 0.92 23
Accuracy 0.94 340
Macro avg 0.94 0.94 0.94 340
Weighted avg 0.95 0.94 0.94 340

TABLE IV
BASELINE PERFORMANCE (100 EPOCHS).

Class Precision Recall F1-Score Support
Airport 0.92 0.85 0.88 39
Bar 0.92 0.97 0.95 37
Bus 1.00 0.97 0.98 32
Construction site 1.00 1.00 1.00 34
Metro 1.00 0.93 0.96 44
Public square 0.95 1.00 0.97 39
Restaurant 0.94 0.97 0.95 30
Shopping mall 0.93 0.93 0.93 27
Traffic street 1.00 1.00 1.00 35
Urban park 0.88 0.96 0.92 23
Accuracy 0.96 340
Macro avg 0.95 0.96 0.95 340
Weighted avg 0.96 0.96 0.96 340

ambiguous classes such as Shopping mall, Restaurant, and
Public square, while learning-curve trends demonstrate the
stabilizing effect of early, geography-aware pseudo-label in-
tegration.

Although residual errors remain in nature-like ambiences
(e.g., Urban park), our findings indicate that explicitly model-
ing temporal context or additional scene attributes could further
improve performance. Overall, the proposed geography-aware
semi-supervised framework provides a simple yet effective
way to enhance ASC generalization across cities and time,
and can be extended to other domain-shift scenarios in envi-
ronmental sound recognition.
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TABLE V
EXTENDED-DATA FINE-TUNING (EXT-FT1), WITHOUT PSEUDO-LABELS

IN PRE-TRAINING.

Class Precision Recall F1-Score Support
Airport 0.95 0.95 0.95 39
Bar 0.95 1.00 0.97 37
Bus 0.97 0.97 0.97 32
Construction site 0.97 1.00 0.99 34
Metro 1.00 0.93 0.96 44
Public square 0.97 0.95 0.96 39
Restaurant 0.85 0.97 0.91 30
Shopping mall 0.96 0.93 0.94 27
Traffic street 1.00 0.97 0.99 35
Urban park 0.91 0.87 0.89 23
Accuracy 0.96 340
Macro avg 0.95 0.95 0.95 340
Weighted avg 0.96 0.96 0.96 340

TABLE VI
EXTENDED-DATA FINE-TUNING (EXT-FT2), WITH PSEUDO-LABELS IN

PRE-TRAINING.

Class Precision Recall F1-Score Support
Airport 1.00 0.97 0.99 39
Bar 1.00 0.97 0.99 37
Bus 0.97 0.97 0.97 32
Construction site 0.97 1.00 0.99 34
Metro 1.00 0.95 0.98 44
Public square 0.97 1.00 0.99 39
Restaurant 0.97 1.00 0.98 30
Shopping mall 1.00 1.00 1.00 27
Traffic street 1.00 0.97 0.99 35
Urban park 0.92 1.00 0.96 23
Accuracy 0.98 340
Macro avg 0.98 0.98 0.98 340
Weighted avg 0.98 0.98 0.98 340

APPENDIX

Tables III–VI present the precision, recall and F1 scores per
class for the baseline and proposed training schedules. Table III
corresponds to the official baseline script with 20 epochs, while
Table IV shows the result after increasing the training epochs
to 100. Tables V and VI present the results for ext-ft1 (no
pseudo-labels in pre-training) and ext-ft2 (pseudo-labels in
pre-training), respectively.

a) Additional observations from per-class results.: From
Tables III and IV, extending the baseline training from 20
to 100 epochs yields notable recall improvements for Airport
(+0.11), Restaurant (+0.04), and especially Shopping mall
(+0.12), confirming that longer training helps the model better
fit acoustically ambiguous categories. However, even with
extended training, precision for Airport decreases slightly (0.97
→ 0.92), suggesting possible overfitting or increased confusion
with other transportation-related scenes.

Comparing the baseline (Table IV) with ext-ft1 (Ta-
ble V), improvements are evident for Bar (+0.03 F1), Shopping
mall (+0.01 F1), and Public square (+0.01 F1). Yet, ext-ft1
underperforms in Restaurant (F1 drop from 0.95 to 0.91) and
Urban park (0.92 → 0.89), probably due to the absence of
pseudo-label guidance during pre-training.

The ext-ft2 schedule (Table VI) delivers consistent gains
in almost all classes. Large improvements appear in Airport
(0.88 → 0.99 F1), Shopping mall (0.93 → 1.00 F1), and
Restaurant (0.95 → 0.98 F1) compared to the strong base-
line. In particular, ext-ft2 also corrects the recall drop in
Urban park, reaching 1.00 recall while increasing precision

to 0.92. These gains confirm that early integration of in-
domain pseudo-labels during pre-training stabilizes decision
boundaries for acoustically overlapping classes and yields
near-ceiling performance across the board.

Overall, the per-class analysis reinforces the conclusions in
Sec. V: city/pseudo-city embeddings and early pseudo-label
integration (ext-ft2) not only boost macro-level accuracy
but also systematically enhance recognition of the most chal-
lenging scene categories.
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